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CHAPTER I•"- -

INTRODUCTION -

All communication channels suffer degradation from nonlinearities. ]
Analysis and correction of the nonlinear distortion thus produced is

seldom feasible with just linear methods, since they fail to capture all

of the phenomena involved. Because of this, the Nonlinear Transfer

Function (NLTF) approach, based on the Volterra theory of nonlinear

systems [1], has recently been applied for weakly nonlinear systems [2].

A weakly nonlinear system is one for which the response is dominated by

the linear contributions for (amplitude) ranges of the input which are

encountered in practice. Such systems are also sometimes referred to as

quasi-linear systems.

In communication systems many sources for nonlinear distortion

exist from nonlinear discrete devices in amplifiers, metal-to-metal

oxide junctions in aircraft shells, antenna structures, etc. The

susceptibility to interference can be especially pronounced when the

transmitter-receiver pair is located in an electronically dense command

platform having a profusion of RF emitters and receptors. For example,

when multiple carriers are amplified simultaneously by one transmitter,

Intermodulation (IM) products are generated due to the nonlinearities in

the power amplifier (TWT or Klystron). Similarly, a strong (locally) ".

transmitted signal leaking into a receptor can, when processed

simultaneously with a weak but desired received carrier by a nonlinear

2%.'
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element, produce intermodulation effects.r ,

" ~~This report introduces a practical method for compensating the un- ,.-.;_

~desirable nonlinear effects produced within such a communication link.':''

• S

- Using the known characteristics of the channel and an appropriately -

.'. ~selected post-compensator structure, optimum parameter values are found". --

for the compensator. The resulting design achieves significant reduction %-%.-

of nonlinear effects. Q

5. .

'- As stated above, we cast the compensation problem in terms of ai .'

Mean-Square (MS) intermodulation criterion. This MS-IM criterion,

. formulated for a frequency band of interest, is minimized by the design
program VCOMP3. This program yields the optimum compensator parameters

sHigh reliability in the minimization process is achieved by use of aink.

powerful optimization package NL2SNO [4]. Clever parametrization of the -I

nblock Transfer Funtons (TF) guarantees the stability of the complete

s dcompensator over the entire parameter space. Examples provided in the

of nonlinear effects."S

report demonstrate both the simplicity and the hig degree of

effectiveness achieable through this new methodology.

. , ,
p uk 2 [

blok Tanser uncion (T) garntes te sabiityof he ompet

compnsaor ver he ntie paameer pace Exmpls prvidd.i th
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CHAPTER II

REVIEW OF VOLTERRA-BASED SYSTEMS

:.. "~'. ' .,.-.

In the analysis of wide band amplifiers, it is often assumed that

the output depends only on the input signal applied at the same instant

of time. The input/output relation can thus be expressed with a power

series expansion as follows:

y(t) - a x(t)+a x 2 (t)+a x 3 (t)+ .. (1)
1 2 3

where x(t) and y(t) denote the input and output signals, respectively,

and the coefficients a are time-independent constants. In general, .*

n

however, the output y(t) is also dependent on the past input signal. An 'S

output expression that includes the contribution of the previous input "' '. '. "

variations is the sum of multidimensional convolution integrals

y(t) = y (t) (2)
n-1

where

Yn(t) = ff .. f hn(T 1 *2, ' .,T )x(t- 1 )x(t- 2 )"

... x(t-- )d-I d-r2  .. d n  (3)

and h is a real-valued symmetric function of n real variables.n '-. -

Expression (2) is usually referred to as the Volterra series.

This representation shows that a nonlinear system may be regarded as the

combination of a linear and a number of higher order nonlinear

-3-
, % .
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subsystems. Each of these subsystems is characterized by a n-

dimensional impulse response hn(T I  ... T also called the nth order'

Volterra kernel [I]. For a physically realizable system, h is causal,
n

i.e., it has the value zero whenever any of its arguments is negative.

Also, these kernels must be absolutely summable for a stable system.

The nth order transfer function is defined as the n-fold Laplace

transform of hn, i.e.,

= = -(Si~~(s T + .. +Sn ) T[-ii .

Hn (s, ' ' ,s) = f f f hn( iT 2, '' ', n)e('""sn

d1 dT 2 -. ..d-r (4)

In particular, we shall call H1(s ) the linear transfer function.

In Fig. 1 a block diagram is shown representing the multi-order

responses summed to produce the final system response.

y t 2t2H (s)3

xY (t

Fig. 1. Model of a weakly nonlinear channel using the

Volterra series representation.

4
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VOLTERRA REPRESENTATION OF THE QUADRATIC SYSTEM

In this section we will discuss in detail the second-order (i.e.,

quadratic) Volterra subsystems. Fig. 2 shows an example of a quadratic

subsystem where H (s) H bs) and H Cs) are linear transfer functions.

This particular example represents the most basic second-order

subsystem and can be shown [2] to be characterized by the quadratic

transfer function

H2 (s 1 , 2 ) = Ha(s 1 )Hb( s 2 )Hc( S 1 +8 2 ) (5)

v44k
Note that in general

where h2 denotes the unsymmetric form of the kernel. The unsymmetric

kernel can be symmetrized by defining a new kernel as ,.. -

1T # [ 2(.T , T2 + I2( ,, )

h2 (T1 4 22 ) = [ 2

Since it is not possible to measure h2 (Ti1 , 2 ) from only the system input

and output [1], it makes sense to consider only symmetric kernels in our

analysis without any loss of generality. In particular, we shall assume

that H (s) -H (s) for the second-order subsystem shown in Fig. 2.
a b

Correspondingly the time-domain Volterra kernel can be shown to be [2]

h ( 1 012) = f h (t)h (a -t)h (a -t)dt (6)
2 12 -~c a I b 2

Associated Two-dimensional Response

The expression

y( 2 )(tl,t 2 ) = f h2 (1 1 ,T 2 )x(t 1 - 1 )x(t 2 -T 2 )dT 1 di 2  (7)

is known as the associated two-dimensional response. Its significance

-5-
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arises from the fact that if we set t t -t then,

1 -
Y(2 )(tt) = Y2 (t) (8) I

~X Wt .. . . .

a c(s)

Hb (S)"" ' ' "

Fig. 2. Basic second-order Volterra system.

That is, y( 2 )(t 1 t2 ) contains the response y2 (t) along the 45 ° line in

the tl-t plane. Further, this associated response can be computed

1 2%

through linear operations on the input signal. Indeed, the two-

dimensional Fourier transform of y(2 )(tl.t 2) is ..- ,

Y(2( 2)  H2 (w 2 )X(I )X( 2 ) (9)

where X(w) is the Fourier transform of the input signal. Taking the . .

two-dimensional inverse Fourier transform yields

y(2)(t,t 2 ) = 2 H2 (w11 2 )X(*1)X(p 2) (10)
(21t) 2-

0p1 t I +t 2 )
Se 1 122 dip1 dip2

Hence, by setting tl-t 2 =t, we have

-6-
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1'J(* 1 +* 2 )t ie

y2(t) "(2w)
2  f f H2 (*1 ,2 )X(4I )X(,2 )e d I d,2  (11) .

Further, by taking the Fourier transform of (11) we obtain

Y2
(u) (w) f f H2(*1 * 2 )X(* 1 )X(42)6( - 1-*2)di1d 2  (12) .......

2 2w 2 1 24*2

In view of (9) we can also write

Y2(W) " f f Y ()(1'02)6(w-*1- )d* d 2. -;"21 -4

1 (2) 1 )d2 1

2wI- , - 1 (13)

In other words, Y2,) is the integral of Y(2)(4i *2 along the line

=i* alternatively, Y 2(,) is the profile of Y(2 )( 4 1 , 2) along the

line q'l~'2 ** ."S.

Let us now consider two simple examples in order to better

appreciate the intermediate use of the associated response for finding

the nonlinear system response.

Example m1o

Let us compute the quadratic system response to a single complex

sinusoid,

x(t) - Ae (14)

Translated into the frequency domain the input is written as

X(w) - 2wA6C(-fI) (15) :.-..-.

Then,

2Y(2) (~1w 2 ) = (21r) H2 (u 1  '02 )5(w1 - )6( 2 - - .aaL . ".

-', g2( o) -~ ~ A2  f f 2 1 , 2 ( 1 1 ) ( 2 1 ) ( - 2 - 1  d  d 1 ..- -.-
(2 (W -fl ) " 2--'11

- .U% %'" 2 (W)' A' f 2- 4, * - 6 *2 w-2 * d-7-

.,....,..,.,.,... .......,.....,..-....... ,......,,....,.....,.......... . -. .
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A2  %' - ,.
A2

" 2-- HH(*19 W40 )(1-91 ) 6(w-*1-a )d*l "" "

2. -

A2 (  '. T_

A2H .2t o ,)6(w-211 ) '

2 j1 l

Y2 (t) "A H 2 '1 1 )e (16)

We note that the output frequency of the quadratic nonlinearity is twice

the input sinusoids's frequency.

Example 2

Suppose now that the input to the quadratic system consists of the sum

of two sinusoids, given by
- .-... --.

Ja1 t JR2 t
x(t) - A1 e +A2e (17)

X(w) = 27r[A 6 (w- 1 )+A2 6 (,- )1 1 2 6Cw 2 )

The corresponding output is '

Y 2(W) f f" H H2 ( 1,12)[A 16(*1- a1 )+A 26( 1 -P2 ) ]
¢. .

•[A 1 6 ( ;P2- QI )+A 2 6(1P2- a2 ) ]6(w-* 1 -I2 )d I dkp 2

j2Q I t j (QI + )t"""""" "

2 1

y2 (t) A2 H (91 ,9 )e +2A1AH2(91 ,0 2)e.

2 1 2 2 1 1:' 2 2 ,

2 j2Q t
+A H222) 2 (18)

Thus an input consisting of the sum of two sinusoids results in an

output containing three frequencies.

The results of the above examples can be generalized to the case of W

an input consisting of the sum of M sinusoids, expressed by

M J9 t '-'>--
I

x(t) - .Ae (19)
a'. o

- a .- *.**.*.* . . .. ... .... -. . . . . . . . . . . .
- - - - - - - - - - - - - - -* 1"* %." . - .

,,-o.o . .-.. •. •. . °. . . -. .wJ •- . ".'.. *% a * •.° *. %. %o ,



The quadratic response to this input can be shown to be

M M 2! AA J(Q +0)t
y (t) 7 i k H (n.9) k (20) ~%~2 ~2 k

1 ~ ~ im 1 !m2! ... MM!.

where

and m is the number of occurrences of the ith frequency (as arguments of

* SECOND-ORDER VOLTERRA SYSTEM RESPONSE TO THE SUM OF H REAL

SINUSOIDS -

Multi-channel communication systems must necessarily employ

multiple carrier waveforms. In a linear environment no new frequencies

are produced which were not present in the input. Nonlinearities, even

of a mild nature, will generate new terms. We derive a closed form

expression for the response ojf a second-order system to an input

consisting of the sum of M sinusoids. Given the second-order symmetric

nonlinear system of Fig. 3, let the input be the sum of M cosine

waveforms

x(t) - A cos(Q t)+A cosat) AcsU ).(1

The output at v ais denoted by (~) * Acspt.(1

v (t) -v +v + +..a a 1a 2a.

12 a

+AMI7a~)C5*M +%) (22)

where e sdefined as Phase[H a (9 1

91

N.

.. . . . . . . . . .. . ............................



To proceed further with the analysis, let us compute the response

at w, 
%

w(t) - v .v 
•

a a

M M

i1I k=1 Ia k

M M 2!

A. . 2  • m M  
--.-. ,,a a

1 < i k 1m

H,($) 
. - ..."'

2. mM.. i- "-

Fig. 3. Basic second-order nonlinear system.

M M
= rik IHaUP )I IH a("k)IcosCait + csS 0(3

1 S i k i kcs~t~ ) (3

where

2!A A
A i k

m1 !m. .. mm!

and 0 Phase(H (Q )a i

Equation (23) nay be simplified by using the trigonometric identity"lb

cos( t)cos()2t) 21 [cos( 1+Yt +os(&-E 2 )t(

-10-
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Thus, we have

M M
2 rik Ha(Oi)Ha(fk)I[cos((ni+ok)t +e +8a ) V :.1 k Si I k

+cos((Q -n )t +8 )] (24)
i +k i kk

The output is then written as.jot .

M M

y(t) rkjHa(ilHb(nk )I

d[IH (a+ a )Icos((Q +a )t +0 + +
I~~~ k k k ";. .

a .- .-

+ I He(9)-a )Icos((ai-ak)t -8k+ ) (25)

To illustrate the use of this consider an input consisting of the sum of'.'-" .

t w o s i n u s o i d s , . . . 3. .

K(t) - A 1 eC0307 1 t ) +A z2 eOs (  2 t ) _. ,

The output is then

y(t)- 2 A1IH a(0 1 2IH o(2Q 1 )j[cos(2nQ t +6z2Q +2,ni )+1 "

+A A JH )H (a )He(91+n2) [eos((a )t +8 + +"
12aIa2121 2 7 Q a+1 2 1 2

+cos(U( -n 2 )t+e -e2 + -2

A2 H i IHc(202)r[cos(2flt +26,2 I2r )+I] (26)
22a 2 +2 a 2

2 2

where * = Phase{He( O i )} -(
ci

Since H (1,) H (Q )H (Q )H (  Q the above expression simplifies...
2 12 a 1 a 2 c 1 th2bv xrsinsmlfe

to

y(t) = 1 A[IH2 (9lQ 1 )Icos(2n 1 t +a1 )+H2 (Q1 ,- 1 )]

2 1 2 - 1 -to •.,.. ......- ',

S- .. ~. ,. .. ~ ... ~ *. *._._.%
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1 2

+ 2 A2[IH 2(Q2,n2)Icos(2 2 t +a 4)+IH 2(Q V-0 2)1 (27)

where

SPhase(H 2(, 1 )

a2  Phase(H (91,9)2 2 12

a 3  Phase{H 2 (Q1,-_02)

=L Phase{H 2(Q21f 2)'

-' THIRD-ORDER NONLINEAR RESPONSE TO A SUM OF MULTIPLE COSINE CARRIERS

The cubic nonlinear response to a sum of M cosine carrier waveforms

is computed as above. Given the nonlinear system of Fig. 4 the response -

to an input of M cosines is

y(t) 4 r iki '~ik9.'
i S k i9

dIR k . lcos((2 2 t + e 0 -9 a

i k .Qk Q ai' k s 9

+JR ~tcos((fii Qk+Q2)t +6 - +6 - 4 -6

i- k 1 0i Qk 9. 1 i'io k' 9Q

1Ivklcos((Q2~) +e0,8 8 +
k 9. S1 Q' Q f 2 .

(28)

A 3!A AkA 9where r mk Zm

m1 !m2 .

-12-
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Q -H (Q)H (a)H~
ikE. a i a k a t

R H (a +0 +0)
idi d i k 9.

6 =Phase(H (a )

091 9 Q Phase[H d(a +1 + k )jj

ks

H44.

Fig. 4I. Third-order nonlinear system.

This expression for the third-order response can be expressed more

concisely with the following notation,

M NN M

"ry(t) = riki9 QiktI d(0i±k0 I

coi- ± ± )t +e ±6 ±6 +0 (29)
i k i a 1i k Q2,. i ±Qk ±S2

To give the reader a feel for the complexity of the cubic nonlinearity

response to a sum of sinusoids, consider an input consisting of the sum -

of three cosine waveforms, with distinct frequencies. In the real-world ''.,.

such a signal might arise from an amplitude modulated carrier, wherein ;

the modulation signal is a low frequency sinusoid; and H3 might be the

-13-



third-order nonlinear transfer function of the power amplifier. The

input is

x(t) A cosU~1 t)+A cos(Q t )+A COS02t)

Using expression (29) the output is

y(t) Q, {'11Q 11 l[3 "a"2i1 cos(fl. )t )

+IH (30 )cos((3Q )t +36 +

r112 1 1 12 1 [21H a(Q29cos( (f2)t +262)

+IHC(20 9 )Icos((29 9 )t +26 fl2 2fl+

+rQ d 1 2 2 Io 1 2 9t1 2% 29 a2 )

+IH(29+2 IcoaU(iIC+(U )t +2 +)+

dIH 1 2 1Jos( 2 + a 2 j
1 2 1 2

+r 221 122 l QId"11-2 HU) Icos C(- 0 )t + 8 )_6a2+ _9
221 (J2 *IO ) 2

+IH(3fl)Icos((3flt 18Q22

+IH( (31+ )Icos((3+)t +36+e~06

113126 Q162131os(23-62 ")t a 8222-
1 3 1

+rIQI[IH (2o6+Q2)lcos((262- )t + + 8 -e 0-~-
1 20 3+ 12

+8 62 3 12 6 3 )

+IH (2 o 62+6 32)Icos( (2 9 f62+3)t + 6 201-0 +3622Q1 -a

+r IQI[HC6-0 Q)IcosU63Q13 "I2 1-262Q )t +8 -28-
3 62 326 122 3

12 3 1 23

+IHd a -02+Q )I os ( - 1 4 -Q3) 6a -6Q + 1 -Q +

1 2 3.~ 1 -



+IJH (a+0 +0 )Icos(( 0 + j+ )t+e +8 + 0 * +0 +:
dr133 23[d 23 )l1o2( 3-a3)t 9 +0 +0f "1 2 3 1 2 3

+r -2H -.M2 +eI
133 1331 d 3) 13 1 3 1 32

+21Ha(9 )Icos((a )t +2e ),.

+IH (0 +20 )Icos((Q +20 )t + +2
d 1 3 1 3 0 12 a 30 +203

01 313.'2-'

+2 231Q 2 J21HC0 3 )lcosC(0 3 )t 2 )
03

+Hd(202-a 3)Icos((2- 3 )t +2e6a-003+20 .
2 3 2 3

+I(29+j4Icos((2a,0 )t +2 00+
2 3 2 3

+rI23Q 3 1[H d('2 + 3)cos((0 2 +2 13 )t +eQ6 a a +29
2 32 3

+21H )Icos( )t +26
a 2 2 a02

+JH (a -2)cos((02-2 3 )t +000-eg3 Q20 3]

r333Q33[31H(0 3)cos((0 3)t +eQ
3

+IH (39 )Icos(C30 )t +3e 3 (30)
3 3

This output expression Is only for the sum of three cosine inputs; If

the input were the sum of seven or eight cosine waveforms, one can see

the difficulty in calculating the response in terms of the frequencies

generated.

K Conversion of The Third-Order Volterra System Respone

Into The Third-Order Nonlinear Responso

The response of a third-order Volterra operator can be expressed inI;the functional form
Y3(t) =H 3[x(t)J

"-15 -
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in which h3 (Ii 2 , 3 ) is the symmetric third-order Volterra kernel of3 29 3

the third-order Volterra operator H In this section, our objective is

to express the Fourier transform of the response Y3 (w) in terms of the --.-

Fourier transform of the input X(M) and the third-order NLTF -

H3 ( W , 2 , 3 ). Note that the arguments are taken to be w, rather than jw

to simplify the notation. Earlier, we saw now the transformation of the

second-order Volterra associated response into the actual response was

accomplished. We follow the same procedure for the case of the third-

order Volterra operator. The third-order associated response is defined

as

y (t t2t 3 ) ; fff h (1 ,P 2 , )x(t -T )x(t -T )x(t "T--
(3)1, 2' 3 3 3 1- 1 2 2 3 3

di1 d2 di3  (32)
1 2 3

The third-order response y3 (t) is readily obtained by setting each of

the arguments of y(3) equal to t. That is

Y3(t) = Y(3)(t't't) (33)

Let us next compute the three dimensional Fourier transform,

Y(3)(,PW, 2 , 3 ) of the associated functici y(3)(t1 t2 ,t3). Then compute

Y () from this Fourier transform of the associated response.

3

The three dimensional Fourier transform of the associated response .

is,

Y(3)(wI, 2 'w3) H3 (wl ,w2 w3 )X(wI )X(w2 )X(w3 ) (34) ..-.

where X(w) is the Fourier transform of the input signal. Taking the

three-dimensional inverse transform yields

- 16 -
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___J(w 1t 1  2 t 2 3 t 3
Y(3 )(t 2 Pt3) (10 (3) 2 1 ) 22 33

dw d 1 dw2dw 3  (35)

Setting t = 2 t3= t in orprevious equation w ban

Ct)1 = 2 d3 ud
Y3 (2))3 fHf Y (3) (W1 ,w2Pu3 )e 1w d2d 3 (36)K273

The inverse Fourier transform of Y Cw) is by definition

y 3(t) f 1 Y (w)e t dw (37)

Thus we wish to make a change of variable in the Fourier transform of

the associated response that will give us the Fourier transform of the

actual response. Let w1 +W +W w , this enables us to obtain Y CW)

from Y (3) Cu1 ,w2 '3 ). We shall make the diesired change of variable inI:two seeps. First, in eq.(38) we let w +u3 iW to obtain

y3(t) = fff Y 3 (Cu1,*1  W u )e 1 1 du d p du (38)

For the second change of variable, let ip +W =w in (240) to have

y~)- 1 yjpW e ut .t A

3(21r) 3  (3)1 3 3 1 uu3 u

Note that this triple integral is in the form of an inverse Fourier

transform of dimension one. From this observation we can rewrite it as

YC() -W W Y()u1 1 I 3 )dP du3  (40)

f - 17 (-
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In other words, Y (w) is the integral of' Y 4C1 1J2 ~ 3  along the plane

W~~l' 2 ~3  alternatively Y (w) is the profile of Y () 1W2*J.. along

the line

S ~ ~CASCADING OF NONLINEAR SYSTEMS r-1

Before we deal with the matter of compensation of nonlinear

systems, we must first characterize a tandem connection of two general

nonlinear systems. Fig. 5 shows the cascade connection of such

Volterra systems. In this section we wish to derive an equivalent

Volterra NLTFs description of the two nonlinear systems in tandem. - _

Suppose that the two subsystems are characterized by the NLTFs H nand

nn

Then M

w= Hjx] ~H ExJ= w (42)
n=i n=1n

and the output y is given by

y =P[w] = [ ~w] (43)
k=1

1" 00

k 1 n=i

To use the nonlinear current method [3], let us replace x with cx to

form a new output;

yc: I HnCexli* (44)
k k n

k-1 n-i

-18-
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n _1 ... k,
L E W J..w 4)14J

n . , 1

in which Pk' is the k-linear Volterra operator
k"1

P k1w n ...,w

k no

1k

ff . p (kt1 P . tk)w (t- 1) *. w1  (t-t1 )d 1  ... d-r (46)
k 1 k n 1 k

Then

y - *. e P w .. , (47)
rn-i n -1 n~~ 1 1 m

This relationship can be re-expressed in terms of the "x-y transfer

function" Q as
-19--..
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h * p i v

E Q k~x] (4$8)v
kI.

vS.0
Now if like powers of E are collected, the Q's can be determined using '

"operator notation" as

Q P PH (419)

Q2= P1H2 +PH

F, = H +2 H ,H H
32 132 2 1 2 3

V.

Q4 = P1H 4 +2P 2 [H1,H 3  +P 2 [H 2  +3P 3 {H PHI PH 2  +P 4[H 1]

Q5 P 1H5 +2P 2[H1 9H4 +2P 2 H 2 0H 3  +3P 3{H1,H 2 tH2 1

+4IP'{H 1PH1,H1,H2  +P H1

This reainhpis needed in our discussion of the mth-order nonlinear

inveHrtemsivlvneP.orj~ mi)(0

These equations can be expressed in the Laplace-domain as

Q (S) =P Cs)H CS)

Q (sip P (s +S)H (sis +H (s )H1 (s2)p2(sits2

P 1(s 1 +S2+3 3)H 3(sis 2 f s3) + EH [ 1 (s 1)H 2 (s 2 Ps 3 )p 2(s1 s 2 +S 3

+H C s 2)H2(sips 3)p 2(s, 2ts +S3 )+H C s 3)H C sis2 )P2(s3ts 1+S)2

+H1 (s )H Cs )H (s )p Cst
1 1 1 2 1 3 3 2

* (51) -

Our objective is to reduce the nonlinear response in a system without

-20-
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distorting the linear characteristics. Since the linear response must

not be changed, the form of Q should be HI; and therefore,
Q-~~~ ,'..%

-P 1 (52)

where I is the identity operator. Furthermore, the second and third-

order net nonlinear transfer functions (Q2 and Q3)can be made zero by

choosing P2 and P as
2 3

P -P H H1 - (53)

p (H + 2P2 H1 ,H2})HI-I

Example

A simple example is used to show how a nonlinear compensator is

constructed. Only the second-order distortion is reduced in this

example, but in Chapter 4 we will address both second and third-order

nonlinearly generated distortion. Suppose the NLTFs of a circuit with a

single nonlinear device [3] are:

Ls
H 1 ( s) = Cs = Cs Z(s) (54)

LCs +Lg s +1

H2 (s 1 s 2 ) = --a2Z(s1  2 )  H1 I )H1 (s 2

Then P becomes

2

P (s s) = --H (sis )H (s +S)

21 2 2 2 1 1

LC(s +3
= a2  -(55)

SLC(s+s2) 2 +Lg (s 1 +s 2 ) +12..1.-1-..

The algebraic expression for P3(sips2,S 3 ) is determined by evaluating

the second expression of equation (55). While this evaluation is

mathematically straight forward, the resulting expression is involved.

-21- ". .
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Therefore, the specific form of P will not be determined. This then .

completes this example. :W7

THE APPLICATION OF VOLTERRA THEORY TO REDUCE NONLINEAR EFFECTS

Volterra theory may be used to predict and diminish undesirable

effects of the nonlinearity of a system. One possible approach

suggested by Wiener [11] is to use linear feedback to reduce the

nonlinear contributions. Let us review the feedback method briefly. "

The reduction of nonlinear response by linear feedback was applied

to transistor amplifiers by Narayanan [5], In that paper the open-loop

transfer function of a transistor amplifier is characterized by a sum of

Volterra kernels, shown in Fig. 6. These kernels take into account the

frequency-dependent nature of the nonlinearities.

The basic closed loop equations for the circuit are: ."-.

e - x-v

y = H[e]

v = B[y]

y = G[x] (56)

The closed loop system operator G, expressed so that it satisfies all

input signals,

G = H [I-BG] (57)

where I is the identity operator. The closed loop kernels for the

first, G1 (w), second G2 (w,w 2 ), and third-order, G3(wI w2,W3) are

obtained by successively equating the linear, second and third-order

terms. . ,

= HI( ) (58)

- 22 -
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G (w - H2(w1 ,"2 ) 1" "
2 ( 1 ' 2 j

)  [ •H( 9)112 1 2 .% .. ." '
[1 1 ( W1)B(l )][1+H 1 (W2 )B(w 2) 1+H1 (W1+ 2)B(w 1+ + 2

-- <.- 1
311

G3(,,,I , 2 , 3 )  - [H3( I  , ( 2 3)  H,. . .
3 2i3 -1 1 +H1 (W i )B(w )Bu 2)

1 1

i B( 1 + 2 )H 2 (W 2,W3)H 2(W2, 3 )  I "''-"-"-

1+H (W )B2w ))1+H ( M .)B
1 3 3 1 W2 3 W2+w3)

1 (60)

1 1 3

Where G 3is unsymmetrized. The application of feedback has reduced the

gain of the linear transfer function by the factor Lw) 1+H (w)B().

The second-order expression reveals that the application of feedback

reduces the gain by the factor of L(NI )L(w 2)L( w +2 ) . The third-order

term indicates that the feedback has reduced its gain by

L(N )L(w2 )L(w )L(w + 2+ 3)_ (and further terms at the frequencies of the

1 2 3 1. 2•3

two possible second order kernels).

From the above discussion, several observations can be made.

First, the attenuation in each output term is related to its generating .

kernel-order; The higher order terms are reduced significantly, however,

the reduction achieved for the lower order terms may not be

sufficient for certain applications. This approach is only useful to

systems in which feedback can be provided conveniently. Clearly,

23 "
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. ... . . . . . . . ... ... .. ... ... . . .. , S

Fig. 6. Volterra model of a transistor with linear feedback.

feedback is not easily implemented if the nonlinearity of the entire

link -- transmitter, channel and receiver -- is to be compensated.

Finally, using linear feedback to reduce interference from the NLTFs

also reduces the gain of the linear TF.

In our method of post-compensation (to be discussed later) these

disadvantages are alleviated to a large degree. ---.

.W

21 - ...
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CHAPTER III -..

INTERMODULATION AND CROSS-MODULATION IN NONLINEAR CHANNELS

AND AMPLIFIERS

The phenomena of intermodulation and cross-modulation occur when

two or more signals are mixed in a nonlinear element in such a way that

multiplicative combinations of these signals are produced. New

frequencies are generated (intermodulation), and intelligence from one .

carrier may jump on to another carrier (cross-modulation). This occurs

in receiver input circuits, as well as in transmitters, and sometimes in

a nonlinear element in the channel. As far as transmitters are

concerned, the process involves the reception of an unwanted signal by

the transmitting antenna, which conducts it back to the final stage of .

the power amplifier, where it is mixed with the transmitted signal. The

process is therefore of greatest significance when both the unwanted

signal and the nonlinear product are within the passband of the final

amplifier. This can only occur if the nonlinear device has a

characteristic of odd order. In this chapter several types of nonlinear

distortion will be discussed."

Distortion Caused by Static Nonltnearities .-a'.- ',

Static nonlinearities may be characterized by a power series with

constant coefficients. For example, a single input, single output static

nonlinearity may be characterized as

-25-
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y(t) =a xt)+a x (t)+a x (t)+ +anx (t)+
I'. 4 .-""'."

a xn (61) ,- .-

n=1 -

.0 n.

This type of nonlinearity is sometimes referred to as a memoryless

nonlinearity, which is to say that the present output is only a function

of the present input values and does not depend upon the past input

values. A nonlinear resistor is an example of a static nonlinearity.

CROSS-MODULATION DISTORTION

Cross-modulation occurs when the modulation information of one

carrier migrates to another carrier that did not have these sidebands.

To illustrate the phenomenon that takes place in cross-modulation,

consider a nonlinear device that has an input-output characteristic

specified by a power series. Let the input to this device be the

sum o an unmodulated carrier with frequency 92 and a carrier with

frequency Q1, modulated with a tone of frequency m

x(t) = V(1+b 1 cos(Qt))cos( t) + V cos(Q2 t) (62)

The spectrum of this signal is shown in Fig. 7. Let us assume the terms

of the static nonlinearity have negligible contribution beyond the cubic

term. The terms of interest lie at the frequencies l and Q2 these are

the cross-modulated terms. The linear part of the response is

Y 1 (t) = a 1 V[(1+b cos ( mt))cos ( QI t)+cos(s2 t)]. (63) .

Using the identity

cos(c)cos(B) = [ [cos(c-8)+cos(a+a)J 4'.

(63) may be written as

-26-
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b b
Y1 (t) " aV[cos(Q t)+ - cos(a -a )t + cs(Q+Q )t+cos(n 0] (64)1 1 2 i 2 1 M 2 64

INPUT

I iU

OUTPUT

0~ l II 1 L JIIr

C- 0; ;

Fig. 7. Spectrum of quadratic nonlinearily .--

generated cross-modulation.

The output spectrum is similar to (in fact proportional) to the input

spectrum. The quadratic, or second-order, response Is,.%-",

y2 (t) = V 2(1+cos(2Qlt))+2b1(coS(at)+cos(2l a W

+ 2b I (cos(i2mt)+cos(2flQ )t)+2(cos( I +j2)t).

b

+ 2 (4cos(Ql-Q2)t)+b 2(1+cos(2Q1 -2 f2)t )

22

+ b (cos(2Q t)+cos(20 t)+b (cos( - 1+7)t

+ 2cos( 2+QI- b m)t)+ rs e b+cos(2n1+2dbm)t
) -

+ 2b I (cos(Q 2+ 01-+Q )t+(1+ cos(2Q ~t))]} (65)"""'""

Let us introduce a notation to reduce the length of the expressions. ""-"'

Let cos(Q)t be represented by C and cos(Q+2)t by + ThenCr1 +12

27 -..-



the previous expression becomes

1 2 b 2
y (t) {a jj [a2(1+ -I-)+4b C 0+b C2Q+

2b1 (C ~+ C
m m 3 m 3 m

+ 2(C +C)+b (C+C A

+ 2(1+ -)C +2b (C +
2 2f 1 aj- a +

+ 2b (C+C+ (6
1 2S2 -2fl 2a +20 20~JI(61 m 1 m 2

I even more compactly,

2~ -)b ~ 2~ l

+ 2(1+ -C +2b C +~4C + 2b C +2C JI (67)
2 )C U 1 2 u ±Qm Q 1 0 ± 2 2

where a 3 12 2-Q and Q? 4. Q +
3~ ~ 2 *i

Notice that there are no cross-modulation terms in this case.

The cubic or third-order term in the series requires a method for

I tabulating the frequency components. This will allow us to view the

various terms faster and this approach can be used to analyze higher

order nonlinearities. For the input

b
X(t) =V(C + -_:(C +C )+C

SI1 2 a 1 Q m Q +Qm Q 2

the cubic output is

y (t) a a 3
3 (t).

We may write the input in an expanded form, namely

x(t) A x (t)+A x (t)+A x (t)+A t11 2 2 3 3 4x4(t

-28-
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where'"- -'""

x Aicos(a t)

Then the output, y3 (t) may be computed by a systematic combination of

the input constituents as follows: the order is three therefore the I -

number of columns (containing the input constituents) is also three.

See Table 1. Each row represents a distinct combination of the three

constituents from the available four sinusoids. For y3 (t) the

components of the output are listed in Table 1. The multipliers 1,3 or

6 in the right half of the table arise from the number of distinct

permutations of the indices of the constituent sinusoids.

Using the cosine identities

cos(a)cos()cos( ) - C +C)4 a-+X+ at$8A ra-BX a48B)

cos2 (a)Cos(s) = g (C2 c-+2C +2C

cos3 (a) 4 (3C +C

a 3az

The terms that produce cross-modulation are
3 3

3VbC1 C C +3VbC C
f1  1- m 2 1 m 2

= b V (C + C C4 Qma2 Qm02 am Q2 QMa2
- blv 3 C .. -(68)

2 1 Q2~ 11 Q+

Actually since

y aY3 3 "-('-'

3

3a3 bI V cos(a )cos(a2 t) +

-29 -
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TABLE 1
COMPUTATION OF OUTPUT FREQUENCIES GENERATED BY

THIRD-ORDER NONLINEARITIES,>.''.

permutations translation

33 2
1 1 2 3A ACos (a t)csg)

1112112I2 2
1 112 3A A2 Cos 0f1 t)cosCQ t)

113~~~ 3 A (~tcs~ 3t

1 114 3A 1A 4 Cos (9~ t)cos(fl t)

1 2 2 3A A 2cosUQ t)cos 2C(at)-

1 6A Acos(o21t)cosUa2t)cosCg t)

1 2 14 6A1 2A4 cosUp t)cosCQ2t~o(Q4t

1 2tcs~lt

1 33 3A A cosU(1 t)cos (Ql t) --

1 31 6AA

1 3 41 6A Acos(il t)cosU23 t)cosO, t)

1 414 3A A 2 cosU21t)cos 2(p ~t)

2 22 A 2Cos3 CQ t)

2 3 23

2 2
2234 3A A Cos (9 t)cos(Q t)

2214 2 2

2 33 3A A cos(p (t)cos ( Q23t)

2
2443A A cosUa t)cos (9 t) - '

214 2 14

3 3 3 3cos ((Q3t)

3 303

30V
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"Table 1 (cont'd)
'

"

22 23 3 4 3A3 A 4cos (c3 t)eos( 4t)" ,

3 4 3 4 o 2 ""''

3 3

4 414 Ac Co Qt

The carrier term may be approximated as

S 3a V cos(a2t)+ a a V cos(l 2t)

1 1 Vcos(6 2 t) (69)

Thus, the cross-modulation at w is

Ycm(t) = IV(1+bcos (mt))cs( 2 t)

b 3 b 2 ""(70)aO a1

The cross-modulation factor is the ratio of b cmto b Is

cmcm- 1

b
cm

cm0 =

3a 3 V2 (71)

a I

As an example consider a= 10, a3  0.02, b1 = 0.5, V = 1 volt. Note

that the amount of modulation is 50%. Then

2
b = 3(0.002)(0.5)(1) . .-.cm

- 0.003

vc(t) - 10(1+ 0.O03cos(Qmt))cos(2t)

-"31 "
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This inde measures th amount of modulation which has leaked onto the

unmodulated carrier.

CROSS-MODULATION FOR NONLINEARITIES WITH MEMORY

Let the input be the sum of a continuous carrier and an amplitude

modulated carrier as before

x(t) =V(1+b 1 Cosamt)cosoi t +VcosQ t

this can be written in a complex phasor form as

x(t) = v 2e I b e 1 b e 2 +2e 2

+2e 1  +b eJ(1 ~+b e +(2~ 2e-1 2  (72)

To reduce complexity, let S

Then we may write x(t) as

x(t) MR [ 2e~ +b e~ +b1 e +m+ 2e I J CC (73)
1 1 m ~ 1 m 2

where CC stands for complex conjugate terms.

If we use the tabulation technique shown earlier and select only the

terms that contribute to the cross-modulation namely, the output

comionent at the frequency a 2 ±Qm turns out to be

y = ±Q 16 b 1[H 3(Q 1,- _Q I ,a )e 9+

16 1 2 +a 3 1 m 2 a2 r

- 32 -
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To discern the elements that cause cross-modulation, we need to express

this equation differently. We will assume H is a continuous functionW
3

and that the frequency of modulation is much less than the carrier .-

frequency,

We may now write the cross-modulation terms generated by the third-order

nonlinearity as_

4 b~ V 1 CH 3 (a 1, -911 92 )e~ Q+ + H (9 1 -9 1 692 )e~ 9 a CC]
2 M 2 m 3 2 m. -

2 1 3112 2 m 2

+cos((fl +al )t+B(5
2 m 2~

where 82 phase(H3U(a,- 1,fl2)

If we look at the third-order system response to the carrier term

Y 3 H 1(9 )e a+ -2 H 92 92-a2 eQ C
32 212

V
*- H (9 )e +CC 

.2 1 2 Q2

=VIM (Q ) ICOq(i t+ B (76)'1'2 ''2 1

where 8~=phase(H (9

Thus the a 2t term becomes

y (t) VIM (Q )IcosUQ t +0
'm12' 2 1

+3b V jH3U(a,-l 0 l)jcos(i2 t +a )cosUQ t)

11 2 1 x 2 28cs~l) (77)
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where bx  3b V
X 1 (a2)1

Therefore,

The cross-modulation term is different from the memoryless case, there

Ycm(t) was pure amplitude modulation. Expressing the cross-modulation

content as a function of 81 and 82 we must consider two cases:

Case I

81 82

Ycm(t) - I H( ) IV(1+bxcosamt)cos
(

2 t+8
1)

This case generates pure amplitude modulation.

Case II

82= 8 
+

" then the cross-modulation is

Ycm(t) = IHI ( 2 )IVcos
(
2 t 8 +bxcosamt)

where b << 1
x

This case generates pure phase modulation.

INTERMODULATION DISTORTION

Intermodulation distortion is the process whereby beat signals at

various sum and difference frequencies are produced. These signals are

impossible to filter with a linear filter because, the interference % -. %
•...- *-* C.

frequencies lie within the passband of the uncorrupted signal. For

example, consider an input consisting of the sum of two cosine

waveforms, - 34 -
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x(t) =VC +'jC
~1 ~2____

The intermodulation terms that would be generated by a second-order *.*

nonlinearity acting on this input are

Y 21M = a 2 2C C .a +0] (79)

The third-order intermodulation products are at the frequencies-

(2I91±92  (20 ±Q1  and could lie within the passband of either carrier.

The complete expression is found to be--..

y a 3 []+ (79)
31M 4 a3  [ 29 ±Q 20 ±Q1 2 2 1

The magnitude of these IM terms is

D = a v (80)
3 4 3

Then the IM index is expressed by

IM - a 2 (81)
3 a 1  ~

*This concludes our discussion of interference types.

. . . . . . .. . . . . -. p
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CHAPTER IV .*,

COMPENSATION

Communication channels, both microwave and satellite, generally

exhibit nonlinear characteristics. When frequency division multiplexing

is employed, it is important to carefully assess the extent of possible

intermodulation distortion. When this distortion exceeds permissible

limits, it is reasonable to ask if it can be reduced by suitable

compensation. In this chapter we present the compensation of both

second and third-order NLTFs. The design methodology developed here has

been implemented in FORTRAN programs VCOMP2 and VCOMP3 [12], [13]. OIL

Results of example runs on these programs are presented, which confirm

"- the effectiveness of our technique in reduction of IM interference in a ,

specified band.

The Pth-Order Inverse ..

Suppose the input-output relationship of Fig. 1, representing a

weakly nonlinear system, is given by

y(t) = H[x(t)]

Ex(t)]+H Ex(t)]+H3 x(t)]+ (82)

then a p-th order post-inverse is defined as follows. A nonlinear

system G (also assumed to be representable in a Volterra series) is the . .

p-th order post-inverse of the nonlinear system H if the composite

system operator Q, given by, ...

36 .
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QCx(t) ] y(t) " '

- G[H[x(t)]] (83)

contains only nonlinear terms of order p+1 or higher and its linear term ..-

is the identity mapping. That is N,

Q[x(t)] - x(t) + Qp+1 [x(t)] * .. (84) W _y

In this report our concern is limited to only second and third-

order nonlinearities. We give below the conditions upon the NLTF's of H

for the cases of second and third-order post-inverses: The following two

conditions must be satisfied [13 for a second-order inverse to exist:

GH = 1 (85)

GIH2+GH = 0 (86)

For G to be the third-order inverse of H, three conditions must be

satisfied, namely (85), (86) and the following

GIH + G H 2  + G3H

G H 3+G2 [H I H 2 1-G =GH2+G3H 0 (87)

132 12 21223

Note that if H = 0, i.e., the second-order nonlinearity is absent, then p--

(87) reduces to

GIH 3 +GH = 0

Although the concept of a p-th order inverse is a useful one from a

theoretical standpoint, its practical design utility is quite limited.

In fact, even the first-order inverse defined formally by (85), has a
-.1 -. °

somewhat limited utility in practice. Indeed, such an inverse would

require the following relationship to be satisfied

G (s)H (S) = 1 (88)

- 37-
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implying that G(5) be the inverse of H(S). This is impractical

for two reasons. First, this would necessitate infinite gain for Gs 1. (S).

% ~ at values of s where HCs) is zero; second, if the transfer function

% H (s) has zeros In the right-halt plane, then G (s) would contain poles

in the right-half plane and would thus be unstable. In most k

- communications applications, a global inverse is, in tact, not required.

*Indeed, it the signal spectrum is limited to the band [wi, , 2J1, then the

- objective should be to design G so that G H may appear to be almost

1 1 T

* equal to one (or, more generally, equal to e3  ) in this band.

As stated above, application to communication systems requires

* minimal transmission distortion only over a particular trequency band

(or bands). Let us denote this band (or union of bands) as <R >; the r***4
roi . .

subscript 'roil signifies the region of interest. Also, let us denote

the desired characteristic ot the composite system as CMu. Then, it is

reasonable to state the desirable attributes ot the compensator as

follows: 1) The composite system Q, should have a characteristic as Lt

- close to the desired as possible, i.e., G H should approximate C(w)

*over the band <R >,2) the contributions of the NLTFs H, etc., in
roi i

thebad ro>an possibly other interference regions of interest

<R should be minimized, 3) the compensator should be stable, and 4)
IM

the structure of the compensator should be simple and relatively

robust, i.e., insensitive to minor changes in the parameters of Hi, H,

etc.

In the Appendix we present two simple examples dealing with the

-38-
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compensation of linear distortion in bandpass systems. These examples

are useful in that they provide insight into the structure of the

compensator TF,(compensator pole location with respect to the system • -

bandpass characteristic) needed to reduce linear distortion. This

provides the basic compensator TF form to reduce the distortion caused

by NLTFs in band-pass systems.

COMPENSATION OF THE QUADRATIC SYSTEM

A communication channel that exhibits only quadratic nonlinearity

(and no higher order nonlinearity) may be represented by a linear

transfer function in parallel with the quadratic TF, as shown in Fig. 8.

This model might represent a transmitter, the channel, the front-end of

a receiver, or a combination of these three.

When an input signal consisting of the sum of two sinusoids,

x(t) - VI coslI t +V2 cosa 2 t 1 1 2

is applied to the system of Fig. 8, the output is the sum of the linear

and quadratic responses. The response of the linear block is

w1 (t) - V1iH1(al1)Icos(()t +0_)

+V2 IH ( 2 ) Icos((1 2 )t +0) (89)

where

e = Phase{H1 (ali )

The response of the quadratic block is

w Wt =U
2

[V IH2(910 a)Icos((29 )t + )+v221H2(a2,2 ) Icos((29 t €)-'.'-.,
2 1 ~2 1'l '*1 1t 2 2 92

+2V1V2 IH2 ( I,-_ 2 )Icos(( 1- 2 )t +"3)
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+2V VIH U1190 )Icos((g +0~) O4

+2 a _ +2V 2 H P Q(90)

where : haeH(l, )

-Phase{H (Q a2)

=Phase[H (Ql,~)

=Phase{H 2 (01 $a2

LIEA
a* R

xx

The system output then contains components with the following

frequencies: a, Q 2 21 29 29 ~1+ S129 2 1-02 and 0.

For reasons that will shortly become apparent, consider that 9 and

Qare nearly equal. Thus as shown in Fig. 9 the intermodulation terms

occur near the baseband and around the frequency 20. In realistic

-40-



"" situations the input spectrum is generally distributed over a frequency

band with a bandwidth of r rad./s. This type of input might represent a

communications signature. The regions of the output spectrum where IM

distortion occurs may be obtained by substituting the boundary values of

the input frequency band for 9 and 2 from the previous discussion,
1 2

r +~ • . -.

c 2 2 c 2

it is readily seen that the output spectrum would now be as shown in

* Fig. 10.

INPUT

0, -
- C.3

OUTPUT

p0 -; - -.. ..

Fig. 9. Spectra of the input and output of the

quadratic nonlinear system.

. .~ . -

Note that the output interference energy is spread over two separate

bands (one near the zero frequency and the other at double frequency). ---" --

A communications system may be compensated by pre-distorting the

input signals with a nonlinearity which is an approximate 'inverse' of

- 41 -
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"7 ... 7

the channel nonlinearities. Alternatively, one may use post-

compensation wherein the compensator is placed after all of the system

nonlinearities as shown in Fig. 11, for example, after the front-end of

a receiver. Bell Laboratories have used pre-distortion for compensation .. .

on a narrow-band (compared to the carrier frequency) signal [6]. Their

compensator structure as well as the theory developed are, however, not

adequate for more general applications. We will use a post-compensation

INPUT

0 ,'' ".- ."

OUTPUT

- ' -'" a1 1 " -

u . -h0
Fig. 10. Spectrum of the multiple frequency input to the

quadratic nonlinear system.

strategy and will apply Volterra theory to develop a general approach

for compensator design. With minor modifications the methodology can

also be extended to pre-compensator design.

Post-Compensator Representation
*. %%'."

The post-compensator transfer characteristic should have sufficient 2-. '.'

latitude so that by proper parameter selection reduction of the

-.42 "
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nonlinear effects is possible. The post-compensator structure shown in

Fig. 12 appeared promising and was proven effective in our studies. The

K: sections of this compensator, are a gain constant for the linear kernel

and a parametric nonlinear block. Only the nonlinear response of the -.

System Under Compensation (SUC) will be compensated; the linear response

will be left essentially unaltered. The output frequencies generated by

the channel NLTF are out-of-band interference terms. Our compensator

will reduce the interference at the frequency 20I. Having chosen the

interference band of interest, the compensator design will now be

discussed. The output of the compensator is

y = +Y2

where the output of the linear TF of the compensator is

G1 [w I] +G [w 2 ] + .-. (91)

The compensators quadratic output is

Y2 = G2 [W1 ]+G [w ]+2G2jw ,w2 } + (92)

where G2 {wI w2 } is the bilinear Volterra operator [1].

Since our analysis is restricted, for the moment, to the second-order

response, we will omit all terms shown underscored in (91) and (92).

Now, substituting for wI and w2 from (89) and (90) and recognizing
G1 . . .

that G (s) K,

Yl= K[V1 IH(Ql1)cos((I)t +6)+V2 H1 P2 )Icos((Q 2 )t +0 )
1 2

+ 1 [ IH ([V 2 0)cos((2Q1)t +¢1)+V 2 IH ( ,02 )Icos((29 t +2
2 1 2 1' 1 12 2 22 2 2

+ 2ViV21H2 a 2 ) Icos(Q aI -)t )¢3+2V V21H21 IQ2)lI."%--

• C S( "i+ 2)t *04) +2V H 1 -" 1 + 2 2 2 11-2 ) ] 1  (93) I : ' " 
I

43 -
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L~~. ..... ...

LJ~ L - ---- J
SYSTEM UNDER COMPENSATION COMPENSATOR

Fig. 11 . Post-compensation of a communications system. -

with quadratic nonlinearity.

.........

G..

Fig. 12. Quadratic post-compensator structure.
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where K is a scalar gain. The quadratic response is given by

Y2 -- E V 1 HI1( IG 2(ill1 )Icos((e0 1lt )2 +01)

1 JW-

4 1222+V21H I (ol )  IG2(92,92 ) Ico s ( (m9R t )+2 6 +0'" .

+2[V V 2 IH1( l)H1 (fl2)GR(1  -)Icos(( 1+fl2)t + +e2+ +)

1 2 )1v g 1 122 ) G2 (12 -2 Q Q 3 4)- .. :1 ~1 2

4 2 4i+2VIH1(f21)G2(Q1 -911 H "Q )G(0 Q..(4
1 1 1 2 1 1 21 2 22' ~2'

Note that the right-hand side of (94) represents G2 [wI ] since all other

terms in (92) were omitted. From the earlier section we know that

removal of the second-order output effects requires _.

GIH2+G2H = 0

1 2 2 1

or, in terms of the composite system TFs

Q =,

Q =0
2

Since we stated that our goal is to reduce the distortion at 2Q2, we do

so by setting terms involving this frequency to zero, i.e.,

V 2Itjeff t ..-. .
2

V2 Real2(KH 2 UlQI)e
a 2 2 1  0 (95)

The above equation describes the relationship between Hi, H2, K and G2

to achieve reduction of interference at the frequency 2Q. Since we

have chosen 2oi as the frequency for compensation, any reduction of the

interference at the frequency 22 would be incidental. If reduction
2

- 45-
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of the IM distortion at both 29 and 2a2 were required, then the

problem would have to be formulated in an entirely different manner;

perhaps, the center frequency of the compensator along with its bandwidth ..-

could be appropriately chosen.

Multiple Frequency Compensation

We have stated an equation which describes the relationship between

the SUC and the compensator to reduce intermodulation interference at

2QI , for an input consisting of the sum of two unmodulated tones. Now

let us compensate the IM interference for the case of an input which has

a spectral bandwidth r. Now the reduction should be achieved over a

band over which IM interference occurs:

20 t r, instead of a single frequency 2 01 .

Quadratic Mean-Square IM Criterion and a Related Cost Function

An index determining the amount of interference reduction is

discussed next. It is natural to define a distortion energy criterion

as

1 f IY2(W ) 2 dw (96)

The actual input signal x(t) is often not known, except that it is

bandpass and real-valued (as is also the linear transfer function

H (s)). For simplicity, we take the spectrum of the input to be uniform

over this band, so that Y2 (W!,,j2) = Q2(W1 , 2). Now since

1 2 2 1

2 ( )  f Q2(W-,I , 1 )dip1  (97)2 2, 1-1

-46-4-.
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therefore our practical distortion criterion becomes

1 0 0+A2

fr 0 IQ- MA , .'d (9 8 )
wA.-

0

where w A is the frequency range of interest.(i.e. The region in which - - .

interference is to be minimized.) It will be seen later that wo - 2w p ..... ,

and A = r if the IM interference at the double frequency is of concern.

The cost function must now be defined over the appropriate band of

frequencies. Using equation (95) the intermodulation at the (wI ,w2)

frequency pair (in the associated-response frequency-plane) is "•"s-.'

Q2(w I 2 ) = KH2 (WIp ' 2 )+H1 (W1)H1 (W2)G(=wIp 2) (99)

where the frequencies wl and w2 each vary from a - to 9I+
1 21 2 1 2

Computation of the Optimal Parameters -

Parameter optimization applied to the design of dynamic systems

involves the selection of a parameter set so as to enable the system to

attain the best possible performance. We have selected for compensator

design the nonlinear least squares minimization algorithm by Dennis et ..

al [7]. This algorithm, in the large residual case, is more reliable

than Gauss-Newton or Levenberg-Marquardt methods [8] and more efficient

than the secant or variable metric methods algorithms [9], such as the

Davidon-Fletcher-Powell method [10,11]. The algorithm amounts to a

variation on Newton's method in which part of the Hessian matrix is -

computed exactly and part is approximated by a quasi-Newton updating

method. To promote convergence from poor starting guesses, the

algorithm uses a model/trust-region technique along with an adaptive -'

choice of the model Hessian. The residual vector needed by NL2SNO is

-47-
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constructed by corverting the interference power density IQ2 ( 1 9,W2 ) I
2

into the proper form. The transformation of the interference density in

the I' 2 plane into the real world frequency axis w is done by

searching the wI' , 2 plane along constant sum (or difference) frequencies

of the argument, and summing it. This is expressed by

Q W Q (W1,w2 ) dt (100)
W 1 +W 2= W

where the integral is a line integral along the line defined by

W 1 +W . Note that dt and dw are orthogonal to each other. The w 2

plane along with the incremental line element di is shown in Fig. 13.

If the band of concern were the baseband, then we would use the line . -.- "

defined by w-W 2 = w for the above integration....-

In the computer program, the cost function is simply defined as

N N 2 (101)

E IQ2(W)1 (101)- -.
i=-N k=-N " ""

where w and w2k are the grid points in the (NIw 2 ) frequency plane

covering the square [- +  ] x [ 2 ' 2 2

The center of the square grid is (0I0 )2 The program NL2SNO uses ' -

rik = IQ2( ) (102)

2
as the residual. The dimensionality of the residual vector is (2N+l) . ..

Initial Parameter Selection

In most optimization methods the a priori values affects the

convergence, as well as the final solution, as local minima may exist

' -..48-. - 48 -:.:-: .
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22

I1 ,1

Fig. 13. The w1 ,W 2 plane.

throughout the range of the cost function. Therefore a method of

determining suitable Initial parameter values (even in a semi-scientific

way) is highly desirable. The approach we use Is to compute the

parameter values needed to compensate the SUC just at the center

frequency (of the interference band). Then equation (99) becomes

where Q2 Qfl 2 Rearranging, we obtain)G "2 c ""(03

G 2 , a-) )"

22
H (Q
1 c

s• , - o

X H (10.4)-
+• H e

Shown in Fig. 14 is the magnitude of QI 2  in the w1 ,W plane.

Consider a compensator which consists of a linear path with gain K, and

a quadratic path as shown in Fig. 15. The transfer functions of the

-"49 -
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* blocks are

s d.b b

G (s G (s) (105)_ ~
a +ac s +a

1 2

LfL

Fig. 14. Second-order distortion space.

7~.

G.(s)

Fig. 15. Quadratic compensator structure

-50-
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From this the NLTF of the quadratic path becomes

bo(s )b Xs2 b )

G (s1 s 2  -+b (105)
(s +a s +a )s +S +a 2)
1 1a '2 1 1 2 2

We shall call this a Type I Quadratic Compensator.

Suppose now we restrict our attention to a single unmodulated carrier

with frequency Q and the interference generated at the frequency 2 .
c c

Setting s1 =s 2 =J-c gives ._

2
b(Jil +b

G (9 ' ) = 0 1 (106)
2cc ( j c+a1 )2 (j2 c +a2)

To compute the initial parameter vector, we equate the right-hand side

of (104) and (105). We will now compute al,a 2 and b so that the phase
2 1

angle of the compensator is equal to 6H* In order to select 0G so that

it is the additive inverse of 0H' let

G = eH - 21, if eH > 0

e if e < 0
0 H H

Then, equally distribute 0G among the compensator poles at -a and

-a 21
,and zero at -b by defining,

0G
eD .3

Since e is a negative angle, ao is positive.

The initial parameter values are then obtained by setting (the gain)

b of the compensator to 1 and solving expression (106) for each

parameter value,
51 '
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tan( e) tan( O)

a 2  tan e (107)
D

Using these computed parameter values evaluate the compensator, .

G (11 )Q G e
2 c C MAG

setting,

HMA

NAG

0 0

This initial parameter method provides a starting location for

compensation over the desired bandwidth. We will demonstrate the use of

this result with an example.

Let

=5 rad/sec
c

H (Q2) 0.01 -j
1 c

H (Q ~ -0.09654I -J0.08098
2c c

Then from (103) the compensator response should be

G (9 Q ) -0.0013 -JO.0052 c' c

* which gives

X H -0.0013 ' bH =-0.005 -

HMG 0.00517 6 e -1.82516 rads

and since ais < 0 ' H G

0 0.60839

-52-



* . .a

b. tan 0.30419) -- 15.9269.

a1  -5 = -15.9269

1" tan( 0.30419)

a2 =~ 10 164.1654,----,
2  tan( 0.60839) " 4.-.s',

now compute the b0 using these parameters,

P~~ql H~MAG " _ 3 .

2.2572 = - -- .
MAG

The initial parameter values are then

,- -(2.2572 -15.927 15.927 164.165 ),

EXAMPLES ON QUADRATIC COMPENSATION VIA PROGRAM VCOMP2

We now give two examples of quadratic interference reduction. Both

examples have been generated by use of the computer program VCOMP2.

Example 1:

Consider a system with the Linear TF

HI s) 0.250025H(s)

s +0.1s +25.25

which has a bandpass nature. The quadratic nonlinearity is of the form

H2(ss 2) _ 100

(s +2)(s +2)(s +S +12)
1 2 1 2

For the type of compensator to use we select the general form outlined

in the previous section.

b0 (.91 +b I )(2+bl ) -. '-T 'F. G (s s+ )(S
2.2(s +a )(s2+a )(s +s+a)

1 a1 ( 2+a1  122

The input is a narrowband signal with a center frequency of ac 5Mrad/s .*

and a bandwidth r, of 2.0 Krad/s. The sum-squared error (i.e., sum

-53-
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squared of r(wI ,w2 ) of the system with no compensation over a 5 x 5 OP

point frequency grid) is c 3.94727. A simpler 3 x 3 example of the

frequency grid is shown in Fig. 16. Note that the resulting band of .. 0;

interference is (2 c- r, 
2 0c+ r). The initial parameter vector is

p = [2.2572 -8.817 8.817 5 .98 1 ]T .

After optimization the compensator parameter values are .- -

p = [43.65 -129.9 234.9 59.72]

A plot of the SUC interference function 20Log(IQIM()I) versus theIMA
compensated one is shown in Fig. 17. The system quadratic sum-squared

error is pGM= 0.081724, a vast improvement over the uncompensated case.PO--

f4 f, 

"

-, f , f 3 -

2 2 *

f. . -f "
2" *-2) ,L'.- .-'.-.

Fig. 16. 3 x 3 point frequency grid of r(wI u2)

Example 2:

This example is similar to Example 1, except the amount of deviation is

increased to 50.0 krad/s. The initial uncompensated sum-square error of

the nonlinear component again over a 5 x 5 point frequency grid for

r(wi, 2) is CPGM" 8.301. The same initial parameter values as in the

- 54 -. ,....,, . .2,



last example are used. The compensated system error is 4.166. The final

parameter values are

T
p- [86. 5 -4533 6480 190]

In Fig. 18 a plot is given of the uncompensated and compensated 1%

Uncompensated

4..

-++.

10 dB Compensated I.

4.997M4.99 5.001 5.003

Fig. 17. Compensated versus uncompensated distortion.

interference function 20Log(IQ1 MwI) for this example. In the above

examples we used a compensator whose blocks were single-pole blocks. A

more effective reduction of the IM interference could be achieved with a

more complex conpensator whose block T~s are second-order. Its NLTF is

given by.

b (s +b )(s +b)
G (sips) 0 1 1 2 2 (108)

22 2 1
1+a2s +

55 -
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,fi _ .. Uncompensated .-% .. , " '

.ompensated

j dB /

4.95 4.975 5.025 5.050

Mrad/s

Fig. 18. Compensation results of the second example

'rhis form of compensator will be called Type II Quadratic Compensator.

In this section we have explored the compensation of interference

produced by a quadratic nonlinearity. As stated earlier, the

interference generated by quadratic nonlinearities does not fall in the

system's passband. However, the intermodulation terms generated by

cubic nonlinearities, can fall within the main passband of the input to

the SUC. Compensation of third-order nonlinearities is considered next.

COMPENSATION OF CUBIC NONLINEARITIES

In this section we present the design of the third-order nonlinear

compensator using the configuration as shown in Fig. 19. The SUC here

is shown in greater detail in Fig. 20. Note that its cubic nonlinearity

may be represented mathematically by the NLTF

H3 (s1 ,s2 s3 ) = Ha(s1 )H (s )H (s )H (s 1 +s + 3 ) (109)
3 2 3 a a2 a3 d 123
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Consider as an input to the SUC, a signal consisting of the sum of threeS sinusoids,

X(t) = V1 cosQ t +V C0s9 t +V cosQ t

the output of the SUC is the sum of the outputs pf the two paths; the

response of the linear block is

(t) v (aI1U )Icos(U()t+%

3---1------- Q

SYSTEM~~~~ UrE OPNAIO OPNAO
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Fig. 20. Communications system model with cubic*-

nonlinearity. (SUC)

w 3 (t) = r ~ r 11 IQ,111 [3IH aUQi)Icos((li)t +6

d 1 Q1 3 1

+r QI[H(f)Ics(t+2 )

11H2Q12 2 Ico(Q 2)t +((20 t +%2,1~1 2

+IHA (2a -Q ) IcOs((2S1f ) 2 + 0
-12 12 12 2 1-2

1 2 1 2

+IH(2Q+ 2Ic~sU29)Ic+UI~t +20 ) 0A

+IH~S2) +(1 +0 Q Ics(a2f2t+ +0~ 4f
u 1 21 2 1 2

+r 222IQ222 1[31H (Ql)Icos((fl 2)t + )
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+IH d(3 2 )Icos((3 2)t +38 +2 3 2 ]

+ r1 131Q131 [21H ( 3 Icos("( 3 )t +293)

+ IHd(2S1 a3 )Ieos((291+j3 )t +2e q+ 02O1+
d 13 13 1 .)3 291+03

+IHd(2%11 92)IcosU29 2 )t +0 a

d, 1- 3 .- 3- 2Q a.-.-

1 3 1 3

, 23 1 2 3

+IH (+1-)Icosc((+- 1 2t +60 t + -e - + -a

113 2  % 2 ~3 12 3
+Il I(9+2-a3)Icos((1++ 2fl3 )t+e +0 +e 1+ 23d 1a 2e331 2 3 -a 3  '-:i

" ~~~~IHd(% 2 3)Icos(( % l2 23 )t+%a o e +,_ ) -'-.-"-

1 2 3 12 3

+r3~l 3 [H(29i)IcO8CC%3-2 )t +6 -20+r 1331Q133 I [lid (9 1-23) 1 co ( z3)t+ l-0 a 3 Q R -2a3 i-Q''<"""-

1 3 1 3

+21Ha(l)ICOS(( I )t +29 )

+IHd(Q +2Ql3)IcOs(C% +293 )t +0 +2 + +2~
3 1 3

+r 2 2 3 Q 22 3 12IHa 3)I c s (( 3 )t +2%0)

222923 a 33 3
+IHd(202 3 ) lIcos((2 2 - R3 ) +2 a 23

d. 2- 3.. 2 l+ 2Q

I+IHd(2a 2+ 3)Icos((22+ i 3)t +2e +2 )d 2 s3 €293 +0

d 23 2  3 2 3 2 3

23Q r331 Q333 [3'H12 2 3)Iceos(( 3)t + )

• "2 3 -2:.":3'.
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+lHd(31 3) jcos((3Q 3)t +36a3+33) ]}(i) +.
3 3 :... ?

The spectra of w and w the output of the SUC for an input consisting -
3'

of the sum of three sinusoids is shown in Fig. 21. The in-band

distortion falls at the following frequencies: 1- 2+ 3 ,  3-1+ 2' Q 2 1'. +2

-03+j2 In the ensuing discussion we have chosen the distortion most

adverse to our communication system to be at a band of frequencies

around 1 Q2 + 3'

Post-Compensator Representation

The cubic compensator structure shown in Fig. 22 appeared promising

and was tried first in our studies. The parallel paths of this . .

compensator are a gain constant for the linear TF and a third-order .-

nonlinear path. Only the nonlinear response of the SUC will be

compensated; the linear response will be left essentially unaltered.

° ~~INPUT .• *

-7-

ILI
OUTPUT

............................................................ .... . ...... '...

": ~*. . -'-

Fig. 21. Spectral plot of a third-order SUC output
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G,~. Is

G,(s) x' Gd ""

Fig. 22. Cubic nonlinearity compensator. 7 1
The output frequencies generated by the channel NLTF are out-of-band and

in-band interference terms. Our choice of an interference frequency to

be reduced is 9I-02+Q3 which is an in-band term. Having chosen the

interference frequency of interest, the compensator design will now be

discussed. Note that at the moment we are dealing with the case of an

input consisting of three sinusoids.

The output of the compensator is

Y Yl+y 3  -

where the output from the linear section of the compensator is All

= KGI [w 1 +KGI [w3 I + "'" (112)

Yl= l1,L + YlN Y1-

The compensators cubic output is

Y3= G3[w 1 ]+G3 [w3]+ 3G3iw1'w1 pw 3+ 3G3 Iw1 'w 39w3 "'" (113)

Since our analysis is restricted, for the moment, to the third-order

response, we will omit all terms shown underscored. Now, substituting
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for w and w3 from (110) and (111) and retaining using only the

distortion terms at the frequency of interest 0 - 12 -~ S2+ we have

IM 1 2 3

y IM K6V V V 1H (91 -nQ,03)IcosM(~2 +~t+) 1~

y G[w1 I

IM

*cos((Q~ 9 Q )t +6 +6 + 62+ (115) .-

where we have let G be a scalar gain K.

From earlier discussion, we know that removal of the third-order

output effects requires

G H =1I

113

or, in terms of the composite system TFs,

Q1

Q 0

Since we stated that our goal is to reduce the IM interference at

01 - Q+ we do so by setting the sum of the terms involving this1 2 V'

frequency to zero, i.e.,

6 V V VH - )H 1(( (i +G(0 )t +, 3
1 2

1 2 3 1 23 4
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to achieve reduction of interference at the frequency aIM a-a 2 + 3 " +-

Multiple Frequency Compensation

We have stated an equation which describes the relationship between .

the SUC and the compensator to reduce intermodulation interference at

1f2+3, for an input consisting of the sum of three unmodulated tones.

Now let us consider the IM interference for the case of an input which

has a spectral distribution over a bandwidth r. An example spectral

distribution of the channel NLTF response is given in Figure 23. .

Now the reduction should be achieved over a band over which the IM

interference occurs: (9 -Q +j) 3 instead of merely the frequency -"

2 3

Cubic Distortion Criterion and a Related Cost Function

A cost function describing the amount of interference is formulated

next. It is natural to define a distortion energy criterion as

e f IY3 (c) 
2dw (117)

The actual input signal x(t) is often not known, except that it is

bandpass (as is also the linear transfer function H (s)). For j ..
simplicity, we take the spectrum of the input to be uniform over this .

band, so that Y3( ,W2 ,( 3 ) =3 )  Now if we define

Q ( )  - - )dd (118)
( - f f 2

3 (2,, 2 3w 1
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INPUT

0 %.

cc-

, =,,,. -" . ' %

OUTPUT

I- -. -I W

Fig. 23. Spectral plot of a third-order SUC output from an input f

consisting of a carrier a with bandwidth r.

then our practical distortion criterion becomes

W2T Id (119) , '

*.

where w0_+A is the frequency range of interest.(i.e. The region in which

interference is to be minimized.) It will be seen later that (0 Ile

and A =3r where the IM interference at im =a 1-+a is addressed.

The cost function must now be defined over the appropriate band of

frequencies. Using equation (118) the intermodulation at the ( w 2 w3 ) " W
I'.w2.3

frequency coordinates (in the associated-response frequency-plane) is

-64-
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Q3 1' 2 3 KH3 ( 1 U'2 'W3 )+H1 (W 1)H1 (-W 2)H (W3)G(w 1-_2'W3 (120)Cw.

where the frequencies wlI w2 and 3 each vary from (c 2 to \..
% 3 c 2 c 2

The residual vector needed by NL2SNO [4] is constructed by converting

the interference density IQ3(w1,w2, 3)
2 into the proper form. The

transformation of the in-band interference power density in (w 'W2,u3)

into the real world frequency w is accomplished by integrating the

values of Q that lie on an interference surface OlM(w) defined by
3 I

W 1- w2 + w3 = -.

This is expressed by

QIM(W) = ff Q3 (W1 , 2 ,, 3 ) doIM (121) -

W 1W 1w2

where the integral is a surface integral along the plane defined by

SiM(w) for w w2 Note that dOiM and dw are orthogonal to each

other.

In the computer program, the cost function is simply defined as .

N N N 2-(122)

-GM = i . IQ3 (ii, 2 j3 3k)
2

i--N j=-N k=-N

where w Ii, w2jand w3k are the grid points in the (w ,'W2'W 3) frequency

space covering the cube [a - 2 x [-Q 2 + x [Q1 2 ~1 2 2 2 ~2 2

+ . The center of the cubic grid is ! '- 2 o3 " The program NL2SNO

'"-"'.-5

uses

r = 3(wi ,w2.9 )I (123)ri ,j ,k I Q 3 ( I i 2 j ' 3 k 0- .- .1.)
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as the residual. The dimensionality of the residual vector is (2N+l)3

Shown in Fig. 24 is a plot of the r i k grid. Fig. 25 shows the

location of an example cube centered at (wI ,w W3)
-*">"

Fig. 26 shows one of the surfaces o (9c ) in the three-dimensionalIM cV

interference space for w=Qc; this plane maps into the real world

frequency Qc

Delay Block in the Compensator Structure

Let us define the group delay of the contributions of the third-

order intermodulation as

T )- -M- Phase{QIM(W)} (124) .,..
IM

We first considered the cubic compensator previously shown in Fig.

21 with nonlinear path NLTF given as

b (s +b )(s +b )(s +b )
G3(s ,s 3 = 0 1 (125)
3 1 (s +a )(s 2+a )(s 3+aI )(s 1 + s 2 S3 + c2

which we will call the Type I compensator.(A fairly complete family

listing of the useful cubic compensator structures is given in Table 2.)

When the group delay of the third-order nonlinearity of the SUC was

small, the optimized Type I compensator turns out to be stable (i.e.,

the block poles of the compensator turned out to be in the left-half s-

plane). However, large values of SUC group delay T render the Type I

IM

compensator inadequate; for such cases the program VCOMP3 yields a) only

a small reduction in c or, b) unstable block poles for the

compens3ator, or both.

-66-
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TABLE 2

TABLE OF COMPENSATOR STRUCTURES .. ':&

IDENTIFIER G G BLOCK TF IN G G BLOCK TF IN G

1 a 3 d 3

(s +b) b
Type I K10

2

Type I ~ The same as the Type I; except that G =Ke

2
b s +b s+ b0 1 3 1Type Ha K

(S + 109i )(S + O.I (s a a3)

Type Iha The same as the Type Iha; except that G =KeS
D 1 ~ -~

b s b s+ b__1%
Type hIb K_____1

2 (s + a)

Type IIb D The same as the Type Ilb; except that G = Ke5 'T

Note: Structures I, 1I Ib, and IMb are not

guaranteed to be stable. However, as discussed
in subsection 3.4, they can be reparametrized so
that in the space of the new parameters these
forms are guaranteed to be stable for every
point.
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Fig. 24I. r ~ kgrid

modified compensator structuri which can effectively reduce the .

IM inerfeenceis proposed next. This modified structure containsa

delay block in the linear path of the compensator, as shown in Fig. 27.

The compensator NLTF G remains the same, thus the designation of this

compensator is Type ID The incorporation of the delay shifts the phase

of w3(SUC IM interference) so that the group delay of y 3 (the

compensator cubic response to the input of w 1 )duplicates the group V

delay of y' N(the delayed SLJC IM interference). This altering of thew

group delay facilitates constructing a stable G 3so that y 3is the

additive inverse of y1 The delayed version of w3 (i.e., yl~ has a

phase characteristic that can be adequately cancelled by the response y3

-68-



of the NLTF G3yet allowing the block poles to be in the left-half s-

plane. Without the delay block, the compensator was able to reduce the

IM interference only slightly, and had often returned

reio inn Q nWf
3 29 3

69w
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1,L' IM

and the underscored terms are of order higher than three, hence omitted.

Note that

Y1,L = K~ 1

where D is the delay operator, D [w I w (t--[) (127)
T Ti 1

Clearly, the IM interference signal is

y t KD [HE t)] G [w1 (t)]. (128)

The effect of the group delay manifests into the composite system NLTF

in the following manner:

i~~~~~.~~ Q 3 ( 1 sS) Ke 2  3)s)

+H(s 1 )H(s 2 )H(s 3 )G 3 (Sis 0s 3  (129)
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SDELAY- -
.. ... ... ... ... .....

G,(s) . . . ..(S

Fig. 27. Addition of a phase delay to the cubic compensator

The Type I cubic compensator provided an improvement over the Type

D

1; the computer program VCOMP3 returns unstable block TFs only

infrequently. Still when compensating an SUC with a large group delay " .. %.

it was occasionally unstable. This led to the development of yet

another type of cubic compensator in which the poles of the block TFs

are restricted to only stable values. In this compensator the form of

the block TFs is the same as in the Type i; however the denominator

parameters are now frozen as

0 =

a 0. 10 -.130
c c c

3o that the the compensator, poles are at 10 and 0.1Q. Thus,
c c;'." ., • ., -,.

2P
b 3', b s + b

G (s) - ------ ---- - , G (s) 1 (122)

.[ a (s+ (0,1)Qc) (s+ (10)0 )  .

-71 -

,.. .. . . . . . . . . . . . . . . . . . . . . . . .

. . .-..

. ..... . .



This structure is called Type Ha cubic compensator. We now discuss a

method to allow the compensator block poles to vary while simultaneously

ensuring that they stay in the left half-plane.

Re-parmetrization of the Compensator Block TFs

To completely circumvent the possibility of obtaining unstable

poles in the compensator block TF, we re-parametrize the G and GA

block TFs in G3. For brevity we will only consider Type IIbd

structure. The TF structure for G (s) and G (s) is expressed as:

b 2 s + b1 s+ b 0-Ga(s) = 2 ....

s + a s + a0

Gd(S) =
d.+ c

We now re-parametrize both transfer functions by use of the equations

bo = p 1 " '

= p2

b p3

2a0 = 2 --

. . P .

2 2

- al : ¥ao P5 ( 121 ) 22 ." ~-

..c .P6. ... ........

-1. i- . .'I-": - 2 .. 6 %
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The new parameter vector is

P = ( 2 1r 3 P4 P 5 P 6 P 7
)

wherein only p 4 p5 affect the poles of G and affects the pole of
a 5 an d"p6 afc te

Gd. Every point of this parameter space maps into a stable point in the

(bo,b I ,b2,aI ,aOc,t) space. Indeed it can be seen that the damping

ratio of G a(s) is guaranteed to be greater than or equal to C. This

form will be called the Type IIbD. The poles of the Type IIbD

compensator are shown in Fig. 28. Notice that the compensator poles at

sand s lie to the left of the contour r no matter what the values of

the parameters P4 and p5 may be.

%-plane

L.A..-L_

S. C

L/

Fig. 28. Pole plot for modified Type IIb cubic compensator designs.

EXAMPLES OF INTERMODULATION REDUCTION USING

THE PROGRAM VCOMP3

Results of example runs on the program VCOMP3 are presented, which

L confirm the effectiveness of our technique in reduction of IM

t"Z  - 73-

. . . . . . . . . . . . . . . . . . . . . . . .



interference in a specified band.

Since most real world communication channels exhibit band-pass V

behavior, the model used for the channel is a Chebyshev bandpass filter :

of second, fourth and sixth-degree (passband ripple is 0.5 dB). The

nonlinearity is third-order and produces a signal approximately -20 dB

below the linear response. In the computer examples we vary the cutoff

rate of the channel (degree), the NLTF of the channel. The compensator

used is of Type IID form shown earlier. l

Compensation Examples by the Computer Program VCOMP3

We now give -everal numerical examples of cubic interference reduction

by the computer program VCOMP3.

Example 1

Consider a system with the transfer function, &

6
H1 ()= 0.571997(10 )s

s1+ 0.571997(106)s +2 4 .9 916(1
12)

which is a second-degree Chebyshev with a passband 4.9 Mrad/s to 5.1

Mrad/s. The system has a cubic nonlinearity of the form.

H (sip s2 s3 2

4 .64 1 6

(s+ 2)(s2+ 2)(s + 2)(s +s +s3+ 12)
1 2 3 12 3

This NLTF has a three dimensional impulse response resembling a lowpass -

filter. The type of compensator used is the stable cubic with linear .. .-.

delay, outlined in the previous section.

G (sit
3 ,s 2 ,s 3 ,p)
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2 2 .Vp2 S1 + p 1 s 1 + p 0 )(p 2 S2 +. p s 2 + ° 0
T° 0. 1-A P, . °

(s1+ 0.1wc)(Sl+ lOc)(s2+ 0.1w,)(s2+ lOwe)

(p 2 s 3+pls 3 + p)

(s+ 0. 1w )(s3+ l )
3 .c 3 c

with the linear section of the compensator defined as cii
-(s1+s-+S 3 . .4

G(s) e

The input is a narrowband signal with a center frequency 9 c of 5 Mrad/s

and a bandwidth r of 200 Krad/s. The sum-squared error of the system

with no compensation is = 0.3036748. The initial parameter vector

W ~~~~is , ,',"--
o]T -' ..- ...

p = [-4.6416 1.587 10.33 . T

After optimization the compensator parameter values are

p = [-839.3 -32.18 -33.21 1.265]

The poles of the compensator were fixed, only the gain and the location

of the zeros were varied. We therefore know that this compensator is

stable. The compensated system cp(M is 0.0003306 a vast improvement

over the uncompensated case. A plot of the compensated nonlinear

interference verses the uncompensated is given in Fig. 29.
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* Uncompensated .

10 dB Compensated -

4.8 4.9 5.0 5.1 5.2
Mrad/s

Fig. 29. Compensated versus the uncompensated interference.

Example 2

This example is similar to Example 1. The linear channel TF is.

unchanged; however, the blocks of the NLTF are all second-degree

bandpass Chebyshev. Thus H a =Hd both have a somewhat narrow bandpass .

characteristic. The sum-squared error of the system with no

compensation c is 105.314013. The initial parameter vector is

p E -4.6416 0.0 0.00.T

After optimization the compensaitor parameter values are

p E 1647.3 -85.75 66.65 1.5791

The compensated system c is 0.0467988, again a vast improvement over
PGM.

the uncompensated case. A comparison of the compensated nonlinear *

* interference and the uncompensated one is given in Fig. 30 .
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___,_ Uncompensated - " "

10 dB Compensated

4.0 5.0 6.0

Mrad/s

Fig. 31. Compensated versus the uncompensated interference.

Example 4"

This example has a linear TF with a very narrow bandwidth. The a.
linear characteristic of the channel is modeled by a sixth-degree

Chebyshev with a passband of 4.9Mrad/s to 5.lMrad/s.

H (s) = " .

0.005708s *'

36 0.250338s 5 75.03610s 4 12.51843S3+ 1875.272 2 156.3556s 15609

The initial parameter vector is

p = [-38.07 0.2547 1.522 0-

The uncompensated system e is 68.5240325. The final parameter values -

are

R [11390 37.12 455.8 2 .2]T

The system MSE is 21.5367901 representing a narrow improvement over the

-8-



uncompensated case. The compensated nonlinear interference is compared

with the uncompensated one in Fig. 32

Uncompensated .*.

10 dBCompensated

4.5 5.0 5.5

Mrad/s

Fig. 32. Compensated versus the uncompensated

interference.
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*5* CHAPTER V

CONCLUSION

The performance of a communication system can suffer degradation

due to the intermodulation (IM) interference created by the inherent

nonlinearities. It has been shown here that such IM interference can

be effectively reduced for the frequency band(s) of interference by a

stable post-compensator appended to the System Under Compensation (SUC).

A complete methodology for designing such a compensator has been

developed. It is based upon a mean-square TM criterion and was

successfully implemented in a FORTRAN program VCOMP3. This program uses

a highly powerful software package for optimization of mean-square

nonlinear functions, thereby ensuring convergence to the global minimum

in almost all practical cases.

NThe key strengths of the new approach are (a) broadband

compensation (over the band of interest) in contrast with the single

frequency compensation attempted in the past, and (b) guaranteed

stability of the compensator. The latter was achieved in a highly

innovative way. The stable region of the space of the parameters (of

block transfer function of the compensator) was mapped onto a new

parameter space. In fact the stable region was the interior of the s-

plane to the left of the constant damping ratio lines, with a damping J..

ratio cspecified by the designer. Thus for the reparameterized problem

the program VCOMP3 is unconstrained to choose any point in the new

-80-
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space. The final design is not only stable, the block transfer

functions have a damping ratio greater than C.

The compensator structures proposed, and used, have blocks with

pole-zero transfer functions, hence only low order blocks are required.

Indeed as shown in the studies presented, only first or second-order

blocks were required. The concept of group delay for the interference

component of the SUC was defined, which was followed by an improved

compensator design. The key advantage realized is that the

dimensionality of the parameter vector was small, typically 3 to 9,

depending on the particular structure. Several case examples were

presented which demonstrate that reductions of 15 to 50 dB in the IM

interference can be achieved.

For completeness of this volume, a fairly comprehensive discussion

of Volterra systems was included. This research clearly shows that

advanced theory can be utilized to yield a practical tool for

improving the performance of expensive communication systems.

Future work can entail a) simultaneous IM interference in several

bands, and b) simultaneous IM interference reduction for multiple

receivers.

4L

81.- .. "

* - 85 .". - .-. .-'..'--. ."'



REFERENCES .'

[i] M. Schetzen, "The Volterra & Wiener Theories of Nonlinear Systems",
New York: John Wiley &P Sons, 1980.

[2] V. K. Jain, A. M. Bush, and D. J. Kenneally, "Volterra Transfer
Functions from Pulse Tests for Mildly Nonlinear Channels", Technical
Report, RADC-TR-83-157, Rome Air Development Center, July 1983. e

[3] V. K. Jain, S. J. Garrett, and A. R. Gondeck, "Analytical Methods for -AW
Characterization of Nonlinear Devices and Networks", Technical Report,
RADC-TR-85-243, Vol I, Rome Air Development Center, December 1985. . -

[4] J. F. Dennis, Jr., D. M. Gay, and R. E. Welsch, "An Adaptive Nonlinear
Least-Squares Algorithm", Technical Report, TR-20, Massachusetts
Institute of Technology, October 1980.

[5] S. Narayanan, "Application of Volterra Series to Intermodulation
Distortion Analysis of a Transistor Feedback Amplifier", IEEE Trans-
actions on Circuit Theory, Vol 17(4), pp. 518-527, November 1970.

[6] R. P. Hecken, and R. C. Heidt, "Predistortion Linearization of the
AR 6A Transmitter", Proc. International Conference on Comm., Vol 2,
pp. 33.1.1-33.1.6, 1980.

[7] J. E. Dennis, and J. J. More, "Quasi-Newton Methods, Motivation and
Theory", SIAM Review, pp. 46-89, January 1977.

[8] J. E. Dennis, "Nonlinear Least Squares and Equations", London: .*

Academic Press, 1977. L--''! '

[9] C. G. Broyden, "Quasi-Newton Methods and their Application to Function

Minimization", in Math Comp., Vol. 21, pp. 368-381, 1967.

[101 M. S. Bazaraa and C. M. Shetty, "Nonlinear Programming Theory and
Algorithms", New York: John Wiley and Sons, 1979.

" [11] D. G. Luenberger, "Introduction to Linear and Nonlinear Programming",
Reading, Mass: Addison-Wesley, 1973.

[12] V. K. Jain, and T. E. McClellan, "Stable Compensation of Nonlinear

Communications Systems (Using Volterra Systems Characterization)",
Technical Report, RADC-TR-85-243, Vol II, Rome Air Development Center,
December 1985.

*[13] V. K. Jain and T. E. McClellan, "A Computer Program for the Design of
Compensators for Nonlinear Communications Systems", RADC-TR-85-243,
Vol III, Technical Report, Rome Air Development Center, December 1985. -' - ,

* Although this report references the above limited document, no limited infor-
mation has been extracted. Distribution on this document is limited to US
Government agencies and their contractors; critical technology; Dec 85.
Other requests for this document shall be referred to RADC (RBCT), Griffiss
AFB, NY 13441-5700.

- 82 -

° - o-.-o.,- ....

• :.,.., L ~ . '',/ ., -- .". .. . .. .- " . . .. . . . . .. . . . . ....... ... . .. .



APPENDIX

-83-



. . -.

.*"'.% .-'

APPENDIX .

SIMPLE LINEAR COMPENSATION EXAMPLE

In this section we offer a tutorial example in altering linear

system response. This material is essential to the compensating of H

and it provides us with a fundamental compensator structure to reduce

the effects of the higher order terms.

These examples deal with the most rudimentary adjustment of linear

distortion in a communication channel. In both examples we take the

general form of the compensator to be &

b s +b0
G (s) =

12
s +a s +a

1 0

Example 1

Consider a communication system characterized by the linear

transfer function

4(10-5 )s 2

H1 (s ) =

4 +(0.283)s 3 +(2.02)s 2 +(0.28)s +9.8

6where all frequencies are scaled by a factor of 10 The frequency band

of interest is

<R> = <(1)0.9(106)I ( )1.1(I0 6) >
2 2

%" . °"•- .
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f (i)10 6ir Hz t

0 2
The system frequency characteristics are given in Table 3. As a measure

of the effect of the compensator on the phase characteristic, a linear

approximation to the phase of each example will be given. ~.

Linear Approximation to the slope

rn-W +c

Maximum u -0.889-10

Mxmmphase deviation from a linear approximation

3.367 0

TABLE 3

THE UNCOMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

W x 106 Magnitude Phase(degrees)

0.90 0.177 89.87

0.95 0.2414 39.30

1.00 0.2419 -41.28

1.05 0.239 -416.81

1.10 0.176 -89.91

It is desired to provide a second-order post compensator to flatten the

magnitude characteristic over this band. The compensator structure

chosen because of its wide bandwidth coverage is

2 2
s +b1 3+

0' 0

85-
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K is chosen to provide unit gain at the center frequency w0, Thus b1 is

the only free design parameter. By experimentation a satisfactory value

was found to be b = 200.0, so that K = 50.64. The corresponding

magnitude and phase of the compensator and the corrected system are

given in Table 4. and Tablc 5.

TABLE 4 W.

THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Compensator Response

w x 106 Magnitude Phase(degrees)

0.90 5.686 -43.92

0.95 4.464 -25.46

1.00 4.011 0.00

1.05 4.423 24.37

1.10 5.420 41.19

The final system response is shown in Table 5, overall response is a

flat pass-band.

Linear Approximation to the slope __

m-W +c

m = -0.433.10 -

c -4.289

Maximum phase deviation from a linear approximation

-J 1.1360

-.86

. .. .°.. . .. . .. .



TAB3LE 5

THE COMPENSATED SYSTEM FREQUENCY CHkRACTERISTICS w
The Final System Response .

W x 10 Magnitude Phase(degrees)

0.90 1.008 45.92

0.95 1.092 13.83

1.00 1.000 -4.28

1.05 1.058 -22.43

1.10 0.994 -48.72

The compensator parameter values which provided the desired results are

listed below:

a =1.0

a1 = 10.1

b = 1930.0
0

b = 405.0

. b2  193
b2=:

:, ~K 50.64.----

Several observations can be made concerning this example; first, the

compensated magnitude characteristic is quite flat. Indeel, it is found

that the maximum deviation from OdB is only 0.2dB. Second, note that

3I the maximum deviation of the uncompensated phase from a linear

approximation given by

.(P ) -0.89066(0 3 )w -4.28 (in degrees)

H

is 3.43 °
. For the compensated system, the maximum phase deviation from

-87-
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the linear approximation

S (w) = (0.015326 )w

is 0.878 ° .

Example 2

We consider the same communication system as before however, here

the objective is to seek a compensator to reduce the 3dB band-width from .

200 Krad/s to 100 Krad/s. A compensator structure is chosen that will

narrow the pass-band it is

(s +(0. " "'-'

G (s) = K
2 2

S +a s +W
1 04

As before K is chosen to provide unit gain at the center frequency w"

The magnitude and phase of the compensator is given in Table 6. The

magnitude and phase of the compensated system is given in Table 7.

TABLE 6

THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Compensator Response ...

6
W x 10 Magnitude Phase(degrees)

0.90 1.813 61.92

0.95 2.894 43.22

1.00 4.010 0.00

1 .05 2.950 -42.09

1.10 1.940 -59.87

The system overall is a 3dB narrower pass-band.

Linear Approximation to the slope

-88-
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M -1.600•10 - 3
____._

S C - -4. 289

Maximum phase deviation from a linear approximation

14.490

TABLE 7

THE COMPENSATED SYSTEM FREQUENCY CHARACTERISTICS

The Final System Response

W x 10 Magnitude Phase(degrees)

0.90 0.321 151.80

0.95 0.708 82.53

1.00 1.000 -4.28

1.05 0.705 -88.90

.-. . "o oo

1.10 0.343 -152.01 ="'' '

a0 1.0

a,= 0.107

b =0.0421

b - 0.425

b 2 0.421 ,-

K -- 50.31

Several observations can be made concerning this second example; first,

the compensated magnitude characteristic reaches the -3dB points in half

-89-
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the bandwidth required in the original system. Second, note that the

maximum deviation of the uncompensated phase from a linear approximation .

given by

(PH(w) -1.600(10-3) -4.28 (in degrees) -.4.

is 14.40 .
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